A-19

PREPARATION AND THE ELECTRICAL CONDUCTIVITY OF THE BINARY RARE EARTH METAL FLUORIDE OXIDES

Masayuki Takashima* and Gentaro Kanoh

Department of Industrial Chemistry, Faculty of Engineering, Fukui University, 3-9-1 Bunkyo, Fukui-shi, 910 (Japan)

As new oxide ion conducting ceramics, binary rare earth metal fluoride oxides (BMFO, $\operatorname{LnIn'F}_{x\,y}$, $\operatorname{Ln,In'}$; rare earth) were obtained by firing the powdered mixture of rare earth fluoeide (LnF_3) and oxide ($\operatorname{Ln'2O}_3$) at a temperature of 1100 - 1400 °C in an argon atmosphere. In the solid phase reaction, the anion exchange reaction between LnF_3 and $\operatorname{Ln'2O}_3$ took place in the temperature range from 200 to 600 °C to give two simple metal fluoride oxides (SMFO) of $\operatorname{LnF}_x{O}_y$ and $\operatorname{Ln'F}_x{O}_y$, and then above 900 °C, both SMFOS began to react with each other to produce BMFO. Two homogeneous phases were identified to be the rhombohedral and the tetragonal. The rhombohedral phase was formed as a stoichiometric compound ($\operatorname{LnIn'2F_3O_3}$) from an equimolar mixture of LnF_3 and $\operatorname{Ln'2O_3}$. The tetragonal one was found to have a wide homogeneity composition of $\operatorname{Ln'_x Ln'_2(1-x)^F_3x^O_3(1-x)}$ where x-value was 0.58 - 0.78.

The electrical conductivity of the tetragonal was at least 100 times higher than for the rhombohedral. All of 210 tetragonal ${\rm Ln_2Ln_2^1F_6^0}_3$ samples involving reciprocal systems have been investigated. The samples containing Pr or Nd or both gave a high electrical conductivity more than $10^{-2}~{\rm Scm}^{-1}$ at 650 °C under around $10^{-7}{\rm atm}$ oxygen and their crystal structures closely resembled the cubic. The charge carring species of these BMFOs except Ce and Tb-compounds was assumed to be oxide ion. The electrical conductivity of the sintered ${\rm Y_2Nd_2F_6O_3}$ sample obtained by hot-pressing at 1250 °C under 300 kgcm⁻² was measured to be 8.0 x $10^{-2}~{\rm scm}^{-1}$ at 750 °C, and its oxide ion transport number was calculated to be over 0.93.